

Actual PLC Programming Standard and Worldwide Acceptance

IEC 61131-3 and PLCopen Activity

Ralf Wohlschlaeger

General Manager Factory Automation Matsushita Electric Works (Europe) AG

Chairman of PLCopen PC1 committee (promotion)

Contents :

- What is IEC 61131-3 ?

- History
- Advantages
- Explanation
- Applications

- World-wide popularity ? - Europe/USA/Asia

- What is PLCopen ?
 - Organisation
 - Current topics Conformity Level, Reusability Level, Motion Control FBs, XML etc.
 - Future prospect

The Way to IEC61131-3 Programming

Source: Dr. J. Christensen

Conventional styled software	IEC 61131-3 styled software
Direct hardware address : - X0, X1Y0,Y1DT0,DT1	IEC address: - %IX0%QX0%MW5.0 - each Variable have a name - each Variable have a data type - global and local Variables
1 Program from start to end	 POU concept: 1 program or more programs → tasks Function Blocks and Functions
No structure	Well structured

Why IEC 61131-3?

IEC 61131-3 An internationally accepted standard

- Unified rules in systems worldwide, reduces misunderstandings and shortens training
- Reuse of ready-made Functions and Function Blocks, saves time for programming and debugging
- Better overview through structure and modularity
- Fewer errors through defined data types and encapsulation
- Safe investment due to standardisation

Examples of IEC 61131-3 advantages

- **Variables :** better documentation --> programming by names / symbols
 - I/O connection list already stored in the project
 - Base for the re-use of software
- POUs : structured programming

 well defined interface --> other variables can be used in other projects
 re-use of Function Blocks saves time and debugging

 SFC : flowchart on the monitor

 divide big programs into small and easy parts
 top down development / bottom up --> well structured
 different languages in the program
 easy debugging and error locating only the current step is active

 General : save training time for programmers

 enables parallel software development by more programmers
 certification ensures users to protect their investments for the future

Use Variable Names instead of Addresses

Control FPWIN Pro - The IEC Programmin Project Object Edit Tools Online Monitor	i ng System Debug View	w Extras Window H	telp						_ 8 ×				
	, • • •	·∎·∎ 🖉 🛄 단	DD CD CAR CAR	₩₩ÛÛ⇔) 4 1-1								
🐺 Project Navigator 📃 🔍	📓 Program	I Program_1 [PRG] Body [LD]											
	2	· Limit_Swit	ch <u>-</u> 1 · · · · · · · · · · · · · · · · · · ·	Start	button · · · · ·	Metor_up_down						
Global_Variables													
Class 👌	lde	ntifier 🦌	Matsushita	IEC_Addre:	Туре	Initial	Au	Com					
0 VAR_GLOBAL			XD	%IX0.0	BOOL 3	FALSE							
1 VAR_GLOBAL			X1	%IXD.1	BOOL	FALSE							
2 VAR_GLOBAL			X2	%IX0.2	BOOL 3	FALSE							
3 VAR_GLOBAL	_ ≛ Mot	or_up_down	YO	%QX0.0	BOOL	FALSE							

IEC 61131-3 Functions

PLCopen Creating the foundation for your efficiency

The IEC 61131 Standard - The PLC Standard

- Part 1 General overview, definitions
- Part 2 Hardware
 - I/O signals, safety requirements, environment
- Part 3 Programming Languages
- Part 4 User Guidelines
- Part 5 Communication

- Part 6 Reserved
- Part 7 Fuzzy control
- Part 8 Guidelines for the application and implementation

International Standard

Access path association

IEC 61131-3: The 5 Programming Languages and The Common Elements

- Character set
- Data types
- Variables

(English.....)

(BOOL, WORD, INTEGER.....)

- (VAR, VAR_input, VAR_output.....)
- POUS, Program Organisation Units (Function, Function Block...)
- SFC Elements
- Configuration elements:

(Steps, Transitions.....

(Tasks)

IEC 61131-3 Elementary Data Types

No.	Keyword	Data Type	Bits
1	BOOL	Boolean	1
2	SINT	Short integer	8
3	INT	Integer	16
4	DINT	Double integer	32
5	LINT	Long integer	64
6	USINT	Unsigned short integer	8
7	UINT	Unsigned integer	16
8	UDINT	Unsigned double integer	32
9	ULINT	Unsigned long integer	64
10	REAL	Real numbers	32
11	LREAL	Long reals	64
12	TIME	Duration	
13	DATE	Date (only)	
14	TIME_OF_DAY	Time of day (only)	
	or TOD		
15	DATE_AND_TIME	Date and time of day	
4.0	or DT		
16	STRING	Character string	o
1/	BYTE	Bit string of length 8	0 16
18	WORD	Bit string of length 16	22
19	DWORD	Bit string of length 32	52
20	LWORD	Bit string of length 64	04

• A POU consists of a header (variable declaration) and the body (instructions)

• POUs enable the re-use of software from macro level (Programs) to micro level (FB and Functions)

POU Type	Replicated as:	Comments
Program	Program instance	Main program
Function Block	FB instance	Subroutine with own
		memory, several in -
		and outputs
		possible
Function	Function	Subroutine without
		own memory

Easy Programming of FBs and FUN

Easy Programming of FBs and FUN

Library Concept

- Self-created FBs can be stored in libraries
- Comfortable structuring and sorting in the libraries
- Know-how protection of FBs and libraries
- Easy reuse of tested software --> saves time

Applications

Building Automation

Elevators

Bakery

Temperature control Telecommunication

Applications

PLCopen Creating the foundation for your efficiency

Applications

22 printed at 6/20/2003

www.PLCopen.org

International Acceptance of IEC 61131-3

• Most PLC suppliers promote IEC 61131-3 in Europe and offer software and training

- Germany, Netherlands, Switzerland, Austria : IEC 61131-3 is well-known and accepted, required by at least 80% of users
- France, Scandinavia: IEC 61131-3 is known by many users, still some require traditionally styled sytems
- UK, Italy, Spain: only few small users know IEC 61131-3, most of them require traditionally styled sytems

America

International Acceptance of IEC 61131-3

• More and more PLC suppliers start to promote IEC 61131-3. Still in the starting phase.

- Many users do not use IEC 61131-3 style because it is too difficult for field engineers.
- Small increase in IEC 61131-3 step by step
- Customers opinions about IEC 61131-3: 7% : it is a must 41% : somewhat important 39% : not important at all 13% : no answers

• OMAC paper is supporting IEC 61131-3 acceptance in USA

Asia

International Acceptance of IEC 61131-3

Asia can be divided into 3 parts:

Japan:

Very few users are using IEC 61131-3, still difficult to use and to understand. Most Japanese PLC suppliers have examined IEC 61131-3. Some first systems are available, but still no real start/success.

• Australia:

IEC 61131-3 is well-known. Larger companies are using it already and it is accepted. Small companies still prefer traditional software style.

• Rest of Asia:

IEC 61131-3 is still not popular. Users prefer easy Ladder Diagram programs. Japan, US and Europe influence the market.

China is starting now to promote IEC 61131-3

PLCopen is a World-wide association

www.PLCopen.org

PLCopen

PLCopen was founded on June 15, 1992 in Giessen, Germany. Target was to promote IEC 61131-3, inform customers and give more weight to the IEC 61131-3 standard.

PLCopen Mission

We want to be the leading association resolving topics related to control programming to support the use of international standards in this field.

PLCopen is a World-wide association

- > 100 members (Nov 2002)
- from 21 countries all over the world
- Suppliers, institutes and users
- See newsletter / website for up-to-date list

- The IEC 61131 standard gives rules for compliancy
- Certification guides users towards real IEC 61131-3 programming systems (e.g. PLCopen certified products)

Without testing there is no standard

Meanwhile only truly compliant IEC 61131-3 systems are promoted as IEC 61131-3 products

TC3: PLCopen Compliance Levels

Certification

Certified products can use these logos

Reusability Level ST

PLCopen Creating the foundation for your efficiency

www.PLCopen.org

Revolutionizing the industry with a global standard

Mechanics do not help anymore, a standard with software is possible

Reduce maintainance and sanitation

Less hardware parts, more software

PLCopen

Creating the foundation for your efficiency

Advantages of servo driven systems

OMAC / PackAdvantages

- Research done by company RA Jones / Rick Liddington
- In cooperation with Packaging World (magazine)

Traditional Mechanical Design

Targets for a new design: 'Zero' maintenance Sanitation design

Solution

 Aim for a 50% reduction in mechanical parts

Multi Axis Servo Drive Traditional Mechanical Design Faster-Better-Cheaperl Software instead of Hardware Major part count reduction - 45 to 0 Pulleys **Servo Drive Design** Belts - 15 to 0 Drive sprockets - 15 to 0 Spline shafts - 2 to 0 Gearboxes - 16 to 10 Motors - 1 to 10 Bearings - 18 to 3 Line shafts - 6 to 0 - 118 to 23 Total (81% reduction)

37 printed at 6/20/2003

www.PLCopen.org

Results :

Side effects :

Reduce delivery time

Motion Control Standardization means:

- Hardware independent Software Development
- Consistent Development Environment
- Consistent Installation and Maintenance Interface

Same

'Look and Feel'

IEC 61131-3 is a good base

The PLCopen Task Force Motion Control

Initiated by Users
 ..to fulfil their requirements

Goal :

To harmonize the access for Motion Control across different platforms during development, installation and maintenance based on the IEC 61131-3 environment Users: **Bosch Packaging** Kuka Kloeckner Tevopharm Focke EKB Hershey Foods Tetra Pak Suppliers: Siemens Elau **Beckhoff Industrial Electronics** SEW Eurodrive Mitsubishi Electric Europe **Cross Hueller** Lenze Parker Hannifin **ISG** Stuttgart **Control Techniques** Phoenix Contact Keba **KW** Software **Rockwell Automation** Nyquist Baumueller infoteam Software **Rexroth Indramat**

HW Independence via Function Blocks

Example of a Function Block

FB-Name	MC_MoveAbsolute						
This function b	block commands a controlled motion at a						
specified absol	ute position.						

A Motion Control Example... Drilling of a hole

Solution with Function Block Diagram

	MC_MoveAbsolute			MC_MoveRelative								MC_MoveAbsolute			
Y_Axis —	Axis	Axis			Axis	Axis			То	n	L		Axis	Axis	-
	Execute	Done			Execute	Done			In	Q			Execute	Done	
-45,0 —	Position	CommandAborted	—	-10,0 —	Distance	CommandAborted		500ms –	PT	ET -	-	1,0 —	Position	CommandAborted	
100,0 —	Velocity	Error	—	10,5 —	Velocity	Error	—					10,0 —	Velocity	Error	
2,0 —	Acceleration	ErrorID	-	2,0 —	Acceleration	ErrorID	—					2,0 -	Acceleration	ErrorID	-
2,0 —	Deceleration			2,0 —	Deceleration							2,0 —	Deceleration		
0,0 —	Jerk			0,0 —	Jerk							0,0 —	Jerk		
-	Direction											-	Direction		

Required functionality

- Move Absolute
- Move Relative
- Timer
- Move Absolute

Solution with SFC

- Step 1: Initialization (power up)
- Step 2: Move forward to drilling position and start the drill turning. Check if both actions are completed.
- Step 3: Drill the hole.
- Step 4: After drilling wait for the stepchain sequence to finish dwelling to free the hole of any debris which might have been stuck in the hole.
- Step 5: Move drill back to starting position and shut the spindle off. Combining the completion of moving backwards and stopping the spindle we signal the step-chain to start over.

Conclusion

- PLCopen Motion Control Library provides an independent user interface
- Support for single axis and multiple axes / motion control
- IEC 6113-1-3 with PLCopen MC provides mechatronic solutions
- User derived FBs and data structures, and multi-tasking are crucial

Future

- Part 1 of the PLCopen Motion Control Library released
- Is implemented now by several suppliers
- Part 2 deals with extensions
- Part 3 will deal with user guidelines

TC6 - XML :

- specification of XML schemes for all IEC 61131-3 languages
- and full projects
- this will provide the basis for exchange (incl. graphical languages)
- and coupling to other software tools
- Start is for FBD languages, as it is the most complicated one

- The basis was provided as a proposal from Schneider Automation and handed over to PLCopen.
- Additional proposals were presented by Rockwell Automation, ABB, and Beckhoff.

• First results (specification) are expected end of 2003

Future direction of PLCopen ?

50 printed at 6/20/2003

www.PLCopen.org

Thank you very much for your attention !

www.PLCopen.org